
Improving Configurability of Unit-level Continuous
Fuzzing: An Industrial Case Study with SAP HANA

Hanyoung Yoo∗, Jingun Hong†, Lucas Bader‡, Dong Won Hwang†, Shin Hong∗
hanyoung0411@handong.edu, {jingun.hong, lucas.barder, dong.won.hwang}@sap.com, hongshin@handong.edu

∗Handong Global University, †SAP Labs Korea, ‡SAP SE

Abstract—This paper presents industrial experiences on
enhancing the configurability of a fuzzing framework for effective
continuous fuzzing of the SAP HANA components. We propose
five new mutation scheduling strategies for effective uses of
grammar-aware mutators in the unit-level fuzzing framework,
and three new seed corpus selection strategies to configure
a fuzzing campaign to check on changed code in priority.
The empirical results show that the proposed extension gives
users chances to improve fuzzing effectiveness and efficiency by
configuring the framework specifically for each target component.

Index Terms—greybox fuzzing, unit-level fuzzing, regression
fuzzing, continuous fuzzing

I. INTRODUCTION

Continuous testing with greybox fuzzing techniques [1],

[2], or continuous fuzzing, is rapidly emerging as a practical

method for open-source projects to guard against security

vulnerabilities and software faults [3]. Greybox fuzzing

has been extended from system-level testing to unit-level

testing [4] for testing an API or internal function for verifying

specific target components intensively. Continuous unit-level

fuzzing is desirable for developers to identify new failures in

a component early to quick start debugging before the buggy

component is merged with the others in the same project.
A fuzzing framework for unit-level testing should be much

more configurable than conventional fuzzing frameworks for

system-level testing because the best fuzzing configuration

for a component under test may be largely different other

components in the same project, depending on the structure,

the functionality, and the usage. However, since the existing

unit-level fuzzing framework (e.g., libFuzzer [5]) provide a

similar degree of fuzzing configurability, it is challenging to

realize effective continuous unit-level fuzzing with the existing

framework for their limited configurability.
This paper presents our experiences on constructing a

fuzzing infrastructure for SAP HANA to provide effective

continuous fuzzing on unit-level fuzzing drivers. HANA

comprises a large number of components that constitute a

fully-fledged, high-performance database management system

supporting various interfaces and runtime environments. To

supplement the manually-written unit tests, SAP has integrated

libFuzzer [5] to the HANA test infrastructure and conducted

a research project to investiage the best practices, and also

to find limitations and chances for improvement within the

fuzzing framework. Through this project, we observed the

following two obstacles of fuzzing effectiveness:
• Despite the users’ effort to configure mutation by

constructing customized grammar-aware mutation

operators, these may not improve the overall performance

depending on how these are scheduled.

• Even with a local code change, the fuzzer starts over the

whole path exploration from the existing seed corpus, such

that it may fail to extensively test the changed behaviors by

spending too much effort on irrelevant paths.

We resolve these problems by extending the test infrastructure

with libFuzzer to provide more configuration options to fit a

fuzzing driver to a target component for continuous fuzzing

application along project evolution. The extension is twofold:

• To effectively utilize customized mutation operators, we

present new mutation scheduling strategies to offer more

options to apply customized mutation operators in a

fuzzing campaign (Section III).

• To give the users to options for seed selection, we propose

new seed selection strategies that effectively re-use the tests

generated with an earlier version (Section IV).

We found that that the proposed technique provides better

chances to the engineers to configure suitable options for

each target component specifically. The experiment results

show that, by using the proposed techniques, the fuzzer

can effectively utilize customized grammar-aware mutators to

substantially improve code coverage (Section III-B) and also

effectively reduces the time to find a failure by leveraging the

input corpus generated with a previous version (Section IV-B).

II. PROJECT OVERVIEW

A. Background: Fuzzing Infrastructure for SAP HANA
SAP HANA is a high-performance in-memory database

system used by numerous IT services worldwide. To ensure

high product quality, the developers are putting extensive

efforts into constructing regression unit tests along their feature

development, and the HANA Quality Engineering team builds

and operates a test infrastructure that manages to run a large

number of regression tests continuously and systematically.

The HANA Quality Engineering team has integrated

libFuzzer [5] into the test infrastructure, so that developers

can construct a fuzzing driver as part of the test suite of a

component. Once a fuzzing driver is registered, it is designed

to periodically conduct fuzzing and report newly found failures

automatically to the developers via issue trackers. To further

help developers analyze found issues, work is ongoing for

performing additional steps within a fuzzing campaign:
• Determine whether a failure is new or redundant, based

on the error information (e.g. stack trace) The fuzzing

1101

2021 36th IEEE/ACM International Conference on Automated Software Engineering (ASE)

2643-1572/21/$31.00 ©2021 IEEE
DOI 10.1109/ASE51524.2021.00111

integration can re-use an existing component in the

infrastructure that collects error information of all observed

failures from regression tests and checks if a given failure

is redundant to an existing case. If a failure is found to be

redundant, it will not be registered to the issue tracker.

• Since the fuzzer produces an input as fuzzing driver

arguments, a fuzzer-generated input is often not human

readable or not directly usable as part of regression testing.

To resolve this issue, a concrete unit test (i.e. as gtest)

can then be instantiated by assigning the parameters of

the unit test case template with a fuzzer-generated input.

This concrete unit test could be automatically pushed to

the repository as part of the regular test suite.

B. Unit-level Fuzzing Driver Construction
This project was started to investigate the best practices

for writing unit-level fuzzing to supplement manually-written

regression unit test cases of the HANA components. To

deliver compelling lessons and realistic assessments, we had

chosen two representative HANA components as flagship
targets to apply best unit-level fuzzing practices and to

examine the capability of the current fuzzing framework.

One target component, hereafter called as Parser, is one of

many parsers in HANA, which converts a user-given text

to the corresponding abstract syntax tree. The other target

component, hereafter called as Deserializer, is a component

that reconstructs a complex object from its encoded data. Both

target components have developed many years, thus they are

well stabilized. As the reliability of both components is crucial,

they already have comprehensive regression test suites.

We constructed fuzzing drivers based on the manually-

written unit test cases in the regression test suites. First, we

grouped the existing unit test cases by test target function.

For each target function, we analyzed all concrete inputs to

identify different test input aspects, and then assigned each

aspect to certain input buffer offsets. Based on the cases of

concrete inputs, we merged the execution paths to the target

function invocation into a single parameterized unit test that

has the common test setup in the main path and the test setup

variations in the subpaths. After the target function invocation,

we add operations to use the results of the target function

in different ways. For example of Parser, the driver executes

visitors to traverse the generated abstract syntax tree. Such

operations are useful as they diversify path conditions such

that more coverage features will be given to greybox fuzzers

to exploit. Last, we constructed project-specific mutators and

incorporated them in fuzzing to inject syntactically valid

mutations for enhancing fuzzing performance.

In our case studies, we had constructed total 10 fuzzing

drivers for Parser and Deserializers. Using these fuzzing

drivers, we could detect total unknown 9 bugs which were

confirmed by the feature developers. Considering the stability

and the quality of the target components, these bug findings

are considred as promising results and the field developers

recognize the effectiveness of unit-level fuzzing.

Through these case studies, we could identify the limitation

of the existing fuzzing framework and developed the

techniques to use the constructed unit-level fuzzing drivers

in continuous testing in effective and efficient ways.

III. CONFIGURABILITY FOR MUTATION SCHEDULING

A. Motivation and Proposed Technique
Grammar-aware mutation is crucial [6] for exploring various

behaviors of a component that receives a structured text

as an input argument. Generic default mutation operators

are ineffective at exercising grammar-sensitive aspects of the

target component since a series of random local text edits

hardly induce semantically meaningful and syntactically valid

changes on a seed input. To resolve this limitation, test

engineers design a grammar-aware mutator which is a text

transformer that mutates an identified syntactic aspect of an

input, rather than just a word, while keeping the structural

validity of the input text. Existing fuzzing frameworks

including libFuzzer provide an interface for the engineer to

construct grammar-aware mutators accustomed to the input

grammar of a specific target component [5], [7].

For effective input mutation for the two flagship

components, we constructed 28 customized mutators for Parser

and 20 customized mutators for Deserializer, respectively.

These mutation operators are systematically constructed based

on our investigation on the target input grammars. Each

mutator is carefully designed to have unique behaviors (i.e.,

not redundnat to other mutation operators), and also efficiently

implemented not to incur much runtime overhead.

Despite these efforts, we initially had frustrating results.

When customized mutators are not properly used together with

the generic mutators, the fuzzer failed to improve coverage

achievement, and sometime the coverage stucked at a lower

point than the fuzzing without using the customized mutators.

These results indicates that the fuzzing framework should

provide a mechanisms to configure mutation scheduling to

leverage both customized mutators and the generic mutators

to substantially improve the overall performance of fuzzing.

To enable the users to configure mutation scheduling

strategies specifically for a target component, we devised

the following five schemes to offer different combinations of

generic mutators and grammar-aware mutators:

• generic-only: use only the generic mutation operators.

All 12 built-in mutators of libFuzzer, including the naı̈ve

crossover operator, are employed.

• grammar-only: use only grammar-aware mutators.

• interleaved: switch between generic-only and grammar-
only every one hour (similar to [8]).

• intermixed: at each mutation chance, select either a generic

or grammar-aware mutator with predefined probabilities.

Based on the pilot study results, we set the probability of

choosing a generic mutator as 75% and the other as 25%.

that of choosing a grammar-aware mutator as 25%.

• combined: switch between two versions of the intermixed

fuzzing schemes periodically: one version selects a generic

mutator with 75% probability, and the other selects a

grammar-aware mutator with 75% probability. This scheme

is a hybrid of the interleaved and intermixed schemes.

1102

TABLE I
THE AVERAGE NUMBER OF BRANCHES COVERED AFTER 5 HOURS

generic grammar inter- inter- combined
-only -only leaved mixed

Parser 10574 10096 10988 11118 10987
Deserializer 5759 4175 6168 5713 6111

Fig. 1. Coverage achievement with Deserializer

B. Evaluation
We explored the proposed schemes for using generic and

grammar-aware mutators to empirically assesses their impacts

on test coverage achievements. For each mutation scheduling

strategy, we conducted experiments with one fuzzing driver of

Parser and one fuzzing driver of Deserializer and measuried

the branch coverage along testing time.

We ran a test execution for each fuzzing scheme and target

program using 8-cores for 5 hours. All test executions were

conducted on a machine running Linux SUSE Server 12 SP3

with Intel Xeon 4116 CPU @ 2.10GHz with 48-cores and 395

GB RAM. The time bound for a fuzzing campaign is set to 5

hours, because, in a pilot study with 12 hours of fuzzing, we

found that the branch coverage does not change significantly

after 5 hours. We run the fuzzing campaign with the same

setting for five times to obtain their average results to limit

the risk of sampling bias. To assess the test coverage, we used

SantizerCoverage to count the number of branches that are

covered at least once in a fuzzing campaign.

Table I shows that the average number of the branches

covered after 5 hours of fuzzing. For Parser, the three hybrid

schemes (i.e., interleaved, intermixed, combined) achieved

higher coverage than generic-only and grammar-only, and,

among the five, intermixed shows the best performance. For

Deserializer, the result indicates that two interleaving schemes,

interleaved and combined, achieved higher branch coverage

than the other three. Unlike the Parser case, intermixed
achieved less coverage than generic-only. Figure 1 shows

the coverage increases with the five mutation scheduling

schemes. The plots of interleaved and combined show that the

coverage rapidly increased right after each switching point. We

conjectured that this is because the branches that the grammar-

aware mutators effectively explore and the branches that the

generic mutators effectively explore are different.

In overall, the experiment results imply that the grammar-

aware mutators should be used together with the generic

mutators as they can supplement each other. We also found

that the performance of a single mutation scheduling scheme

depends on the target component, thus the fuzzer framework

should provide the users to experiment different schemes

and to configure the fuzzing configuration specifically to

a given unit-level fuzzing driver. Finally, among the five

Fig. 2. Seed Corpus Selection Workflow

proposed schemes, combined performs best to provide high

coverage achievement reliabily as it conducts intermixing and

interleaving of two sorts of input mutation at the same time.

IV. CONFIGURABILITY FOR SEED CORPUS SELECTION

A. Motivation and Proposed Technique
An initial seed corpus is a key factor that determines the

search scope of a fuzzing campaign [9]. A fuzzing driver

is conventionally accompanied with a general-purpose seed

corpus which aims to target a wide range of the target program

behaviors. In contrast to this convention, if the user wants to

run a fuzzer to quickly check on a code change in a specific

component (e.g., for a pre-commit check), it would be better

for the fuzzing to use a seed corpus relevant to the changed

code, rather than a genearl-purpose seed corpus.

To enable users to configure a fuzzing campaign specifically

targeted for a code change, we propose a new technique that

(1) stores the resulting corpus of an earlier fuzzing campaign

together with their coverage information and then (2) produces

a change-specific seed corpus by collecting a subset of the

stored test inputs that cover the changed code region. The

technique provides three selection strategies to control the

seed corpus size. We conjecture that, if a code change is

not significant, the stored test inputs will position execution

paths in the fuzzing queue to effectively explore the changed

behaviors of the target program.

Figure 2 describes the overall workflow of the proposed

technique. There are two fuzzing modes: general mode and

local mode. The general mode uses the general-purpose seed

corpus as the same as the conventional fuzzing. A fuzzing

campaign in the general mode typically runs for long time

to explore as diverse behaviors as possible. Once a general

mode fuzzing on an earlier version (vi) finishes, the generated

corpus is passed to the corpus database (Ti). Note that the

resulted corpus does not contain all generated inputs, but only

a subset of generated inputs each of which covers at least one

coverage item uniquely (i.e., interesting input [10]). For each

test input, the functions covered in the execution are identified,

and then, for each covered function, our framework stores the

set of the test inputs covering the function as the per-function
seed corpus in the corpus database.

The fuzzer starts a campaign in the local mode when a

local code change (Δ) is made on the target component and

the user wants to quickly check whether the revised version

(vj) has a new failure or not. Under the local mode, the change

analysis module identifies all functions (Δ
′
) whose code was

modified from the earlier version on which the latest general

1103

TABLE II
STUDIED CODE CHANGE CASES

study
component failure type

changed # changed # stored
name lines functions tests
C1 Parser Out-of-mem. +28, -8 2 7058
C2 Parser Segfault +20, -5 2 7058
C3 Deserializer Segfault +9, -0 1 3009
C4 Deserializer Abortion +10, -0 2 3009

mode fuzzing was conducted (vi). This module uses diff to

find all updated source code files and determines all functions

where at least one of the code lines was modified, deleted or

added. Given information on the changed functions and per-

function corpus, the corpus selection module produces a seed

corpus targeted for testing the changed functions. The corpus

selection offers the following three strategies:

• select-all: select all inputs in the per-function corpuses of

the changed functions

• select-coverage: select a small number of test inputs that

cover all functions covered by the per-function corpuses of

the changed functions. Initially, random five test inputs are

selected from the union of the per-function corpuses of the

changed functions. And then, until the selection covers all

functions that the per-function corpuses cover, iteratively

includes one random test input among the ones that cover

a missing function to the selection.

• select-N : randomly select N inputs from the per-function

corpuses of the changed functions.

We devised three different strategies for the users to control

the seed corpus size depending on a fuzzing situtation. After

a local mode fuzzing, the proposed technique does not update

the corpus database, since the generated test input would

be biased toward specific behaviors or code regions at the

moment, thus they may not be effective for targeting other

parts of the target components.

B. Evaluation
We conducted the experiments to assess to what extent the

proposed techniques improve fault detection ability and fault

detection rate of our fuzzing framework for checking on code

changes. For this evaluation, we designed four studies where

we first made a code change by injecting a fault to a target

project, and then ran the local mode fuzzing to detect a failure.

The code changes used for the study are imitating the historical

cases of the actual bugs that were recently fixed within the

scope of the unit fuzzing drivers in Parser and Deserializer.

Table II presents the information of the four fault-injecting

code changes. Unfortunately, we could not use a previous

commit that actually induces a bug since we found that the

bug-inducing commit is apart from the latest version and not

compatible with the current fuzzer framework intergration.

To limit validity threats, each fault injection is carefully

constructed in collaboration with the field developers of the

target component to reflect the situation of the actual bug.

For each study, we experimented the proposed technique

with select-all, select-coverage, and select-10 (i.e., select

10 random test inputs that covered the changed functions),

independently. In addition, as a baseline technique, we

additionally experimented the fuzzer with the general-purpose

TABLE III
EVALUATION RESULTS OF SEED SELECTION TECHNIQUES

general select-all select-cov. select-10

C1
detect. ratio 40% 100% 100% 100%
average time 16687 1059 1877 3071
corpus size 61 600 37 10

C2
detect. ratio 40% 80% 40% 40%
average time 13356 8997 8013 7596
corpus size 61 600 38 10

C3
detect. ratio 100% 100% 100% 100%
average time 26 0 0 0
corpus size 20 117 15 10

C4
detect. ratio 100% 100% 100% 100%
average time 2973 0 222 990
corpus size 20 946 49 10

seed corpus constructed for the corresponding unit fuzzing

drivers. We used one fuzzing driver for Parser and another for

Deserializer that we constructed for the project. We configured

the fuzzer to use all generic default mutation operators.

The customized mutation operators were not used in these

experiments to simplify the experiment space. Using the same

machine as described at Section III-B, we conducted five

independent fuzzing campaigns for each strategy using 7 cores

with a 5 hour time limit. We measured the probability for the

proposed technique with a strategy to find a failure in 5 hours,

and the average time to first failure detection.

Table III shows the experiment results. Each row with

“detect. ratio” shows the ratio of the fuzzing campaigns that

detects the failure to the total number of fuzzing campaigns

(i.e., 5). Each row with “average time” gives the average time

(in seconds) to first failure detection. Each row with “corpus

size” shows the average size of the used seed corpus.

The results show that the proposed corpus selection

techniques imporves both fault detection abilities and fault

detection rates in all four case studies. In C1, the

proposed technique always detected the failure, whereas the

conventional fuzzing with the general-purpose seed corpus

detected the failure only for 40%. The average failure detection

time of the proposed technique is only 6.35% (select-all)
to 18.40% (select-10) of the baseline technique. In C2, the

failure detection ratio of the proposed technique is greater than

(select-all) or equal to (select-coverage, select-10) the baseline

technique, and the avarage time to the first failure detection is

only 56.9% to 67.4% of the baseline technique result. In C3

and C4, all techniques detected the failures in all cases. In C3,

the proposed technique with all strategies immediately found

the failure as the stored corpus contains failure-revealing test

inputs. In C4, the proposed technique tool only 0.0% (select-
all) to 33.3% (select-10) of the testing time of the baseline.

These results imply that use of the seed corpus specific

to code changes improves fuzzing performance, and, among

the three proposed strategies, select-all showed best results as

it always achieved the highest fault detection ratio, and the

highest fault detection rate for three cases (except C2 where

select-coverage showed the best fault detection ratio).

ACKNOWLEDGEMENT

This work is supported by SAP Labs Korea Inc. and the National

Research Foundation grants funded by the Korea government (NRF-

2020R1C1C1013512 and NRF-2021R1A5A1021944).

1104

REFERENCES

[1] V. J. M. Manès, H. Han, C. Han, S. K. Cha, M. Egele, E. J. Schwartz,
and M. Woo, “The art, science, and engineering of fuzzing: A survey,”
IEEE Transactions on Software Engineering (TSE), vol. early access,
pp. 1–1, 2019.

[2] P. Godefroid, “Fuzzing: Hack, art, and science,” Communications of the
ACM (CACM), vol. 63, no. 2, p. 70–76, Jan. 2020.

[3] K. Serebryany, “OSS-Fuzz - Google’s continuous fuzzing service for
open source software.” Vancouver, BC: USENIX Association, Aug.
2017.

[4] D. Babić, S. Bucur, Y. Chen, F. Ivančić, T. King, M. Kusano,
C. Lemieux, L. Szekeres, and W. Wang, “Fudge: Fuzz driver generation
at scale,” in Proceedings of the 2019 27th ACM Joint Meeting on
European Software Engineering Conference and Symposium on the
Foundations of Software Engineering, ser. ESEC/FSE 2019. New
York, NY, USA: Association for Computing Machinery, 2019, p.
975–985. [Online]. Available: https://doi.org/10.1145/3338906.3340456

[5] LLVM Compiler Infrastructure, libFuzzer – a library for coverage-
guided fuzz testing, https://llvm.org/docs/LibFuzzer.html.

[6] R. Padhye, C. Lemieux, K. Sen, M. Papadakis, and Y. Le Traon,
“Semantic fuzzing with Zest,” in Proceedings of the 28th ACM
SIGSOFT International Symposium on Software Testing and
Analysis, ser. ISSTA 2019. New York, NY, USA: Association
for Computing Machinery, 2019, p. 329–340. [Online]. Available:
https://doi.org/10.1145/3293882.3330576

[7] A. Fioraldi, D. Maier, H. Eißfeldt, and M. Heuse, “AFL++
: Combining incremental steps of fuzzing research,” in
14th USENIX Workshop on Offensive Technologies (WOOT
20). USENIX Association, Aug. 2020. [Online]. Available:
https://www.usenix.org/conference/woot20/presentation/fioraldi

[8] Z. Xu, Y. Kim, M. Kim, and G. Rothermel, “A hybrid directed test suite
augmentation technique,” in 2011 IEEE 22nd International Symposium
on Software Reliability Engineering, 2011, pp. 150–159.

[9] A. Rebert, S. K. Cha, T. Avgerinos, J. Foote, D. Warren, G. Grieco, and
D. Brumley, “Optimizing seed selection for fuzzing,” in Proceedings
of the 23rd USENIX Conference on Security Symposium, ser. SEC’14.
USA: USENIX Association, 2014, p. 861–875.

[10] “American fuzzy lop - a security-oriented fuzzer.” [Online]. Available:
lcamtuf.coredump.cx/afl/

1105

